LEARNING PONG

Matthew McBrien

School of Electrical and Computer Engineering

Georgia Institute of Technology
mmcbrien3@gatech.edu

Alexandra Melehan
School of Mechanical Engineering
Georgia Institute of Technology
amelehan3@gatech.edu

Matthew Munns
School of Industrial and System Engineering
Georgia Institute of Technology
mattmunns@gatech.edu

April 21, 2020

ABSTRACT

Reinforcement learning is a machine learning methodology that enables an agent to interact with
and learn from its surroundings, dynamically adapting to successes and failures it encounters. In this
project, we train a reinforcement learning agent to play a modified version of the game PONG. We
use the genetic algorithms NeuroEvolution and NeuroEvolution of Augmenting Topologies to guide
the agent’s improvement through experience playing the game. In addition, we leverage serverless
computing technology to efficiently train the agent in parallel. We find that NEAT is a far superior
learning algorithm to NeuroEvolution in terms of efficiency.

1 Introduction

Our project is to use Reinforcement Learning to train a
model to play a competitive, one-one-one video game.
The game we have chosen to implement is a custom game
that is very similar to Pong. To train our model, we
implement two different algorithms: 1) NeuroEvolution
(NE) and 2) NeuroEvolution with Augmenting Topolgies
(NEAT). NE uses a predefined neural net structure and
iteratively tunes the weights of the connections using a
genetic algorithm. NEAT does the same, but it starts with
a minimal structure and builds upon this by adding nodes
and connections randomly. All of our code is in a github
repository.

2 Methodology

We seek to develop a neural network that will control a
paddle to play our modified PONG game effectively. The
neural network will make a decision for the paddle for
every frame of the PONG game. The network will take
in eight inputs: the paddle’s X and Y position, the op-
ponent’s X and Y position, the ball’s X and Y velocity,
and the ball’s X and Y position. The output of the neural
network has four output nodes, corresponding to move-

ment up, down, left and right. Whichever output node has
the largest value is the movement that is executed at that
frame. So at every single frame the neural net will select
a key to press that corresponds to movement in a certain
direction.

2.1 Reinforcement Learning

We use two reinforcement learning algorithms to train
the neural networks. These algorithms are NeuroEvolu-
tion (NE) and NeuroEvolution of Augmenting Topologies
(NEAT). The training process consists of neural network
controlled players competing against each other within
groups called Generations. Generations have a predefined
population size, where each member of the population is
controlled by a unique neural network. In context of the
population, each unique neural net is frequently referred
to as a genome. After each member of the population
competes with each other member, each genome is scored
according to an objective function, and a new generation
is developed according to the reinforcement algorithm
controlling training.

The success of a particular neural network affects its
likelihood to appear in subsequent generations. Success
is defined by the experimenter and in our case is separated


https://en.wikipedia.org/wiki/Pong
https://github.com/mmcbrien3/MLBS_FinalProject
https://github.com/mmcbrien3/MLBS_FinalProject

into three phases. Each phase has an objective function
that awards points or applies penalties for events that may
occur during a game. The three phases’ objective func-
tions are defined below:

With:

h = the number of times the paddle hit the ball

p = the number of times the ball is passed to the
opposite side

go = the number of goals against

gy = the number of goals for

fs = the number of frames in which the paddle is static

The objective functions for each phase are:

1. forj = 0.5h — 0.2
2. fobj = 0.5h + 2p - 02f5
3. fon; = 0.5h 4+ 2p + 5g¢ — 10g, — 0.2

The strategies needed to succeed at our version of PONG
are complex, and a three stage learning strategy, with
more complex objective functions in subsequent stages,
allows our reinforcement learning agent to develop fun-
damental skills like hitting the ball before tackling more
involved skills such as scoring.

2.1.1 NeuroEvolution

NeuroEvolution is a set of techniques within reinforce-
ment learning that uses an evolutionary algorithm. The
evolutionary algorithm generates, mutates, and scores
generations of neural networks. Using this technique, the
NeuroEvolution algorithm can begin without any data and
be able to learn how to operate successfully in its envi-
ronment. The algorithm creates a generation consisting of
different neural networks. Once each neural network has
experienced the environment, they are assigned a score
using the objective function. The best neural networks
have the highest chance of persisting onto the next gen-
eration (similar to natural selection), and mutations can
randomly occur that affect the next generation as well.

The NeuroEvolution algorithm alters the generations by
only changing the weights of the connections in the net-
work [1]. Weights may mutate randomly up or down. Our
NeuroEvolution algorithm was manually implemented in
Python.

2.1.2 NeuroEvolution of Augmenting Topologies

The second algorithm, NeuroEvolution of Augmenting
Topologies (NEAT), expands upon the original Neu-
roEvolution algorithm by implementing the ability to
change the topology of the neural nets. Layers, connec-
tions, and nodes may be added to the network through
random mutation. Note that these topological features
may only be added, not taken away. This generally tends
to lead to faster training as the changing topology results

APRIL 21, 2020

in more sweeping changes to the functioning of the neu-
ral network [2]. The NEAT algorithm is implemented in
Python using the NEAT package [3].

2.2 Game Development

We have developed a PONG-like game that builds on
PONG by adding movement capabilities and a more spe-
cific method of scoring. We created the game using the
python package Pygame. The main differences are that
the goals are smaller and the players have the ability to
move in both the z and y dimensions.

Figure 1: A screenshot of the developed game

The goal of the game is to knock the ball into the op-
ponent’s net by controlling your paddle. The faster the
paddle is moving when it collides with the ball, the more
speed is imparted to the ball. This allows for a more rich
set of moves for a player (or computer) to master when
compared to the traditional Pong game.

2.3 Parallelization

There is an obvious problem from having the neural nets
compete in a round-robin style. If each neural net must
compete against every other neural net one time and the
number of neural nets in a generation is N,,, then the
number of games that must be played in a generation,

Ggen:
Nnn
Ggen - ( 2 )

If there are a meager 30 neural nets per generation, this
means that Gge, = 435. If each game takes only 0.1
seconds, which we have found to be possible, each gen-
eration will take almost 1.5 minutes. This number will
explode with more neural nets. We have looked at a num-
ber of solutions, such as limiting the amount of games,
but the most exciting has been to use the AWS cloud for
parallelization.

To parallelize the round-robin like tournament in the
cloud, we are using AWS Lambda which is a serverless
computing platform and AWS Kinesis which is a data
stream platform. We have written a lambda function that
is capable of executing a Pong game with two neural nets.
When the game is completed, the result is submitted to the
kinesis data stream. The lambda function can be executed
in a highly parallel fashion. This means we can drastically
cut down on the time per generation. Preliminary results


https://www.pygame.org/
https://aws.amazon.com/lambda/
https://aws.amazon.com/kinesis/

have shown that we can complete a generation of 45 neu-
ral nets (Gge, = 990) in about 8 seconds, compared to
about 110 seconds when run sequentially and locally. One
of the bottlenecks that had to be avoided was the time to
actually submit this many requests to Lambda. Submit-
ting 990 post requests from a single thread can take tens
of seconds, which is unacceptable. To ameliorate this, we
implemented fanout within the Lambda functions. This
means that, for example, 20 different games are submit-
ted to each lambda function. The Lambda function then
submits 16 of those games to new Lambda functions and
locally executes the remaining four. When the second
level Lambda function receives the 16 requests, it submits
12 of them to another Lambda function and locally exe-
cutes the remaining four. This continues until all of the
games have been executed. This drastically cuts down on
the time per generation.

aaaaaaaaaaaaaaaaaaaaa

Figure 2: A depiction of how the computer responsible
for training submits the games to Lambda functions us-
ing a fanout technique and then retrieves results from a
Kinesis Data Stream.

3 Results

Most of the results discussed here will be qualitative. Dis-
cussion of what steps were performed and how well the
algorithm learned the game of pong is here.

3.1 NeuroEvolution

NeuroEvolution proved to be an ineffective means of
learning complex tasks. Since the researcher must hand-
select the topology of the neural net there is a tradeoff
that is introduced. Generally, small neural nets will learn
something simple quickly while large neural nets are ca-
pable of learning something more complex in a longer
amount of time.

In our case we tested both a simple neural net and a com-
plex neural net. When we passed the algorithm a neural
net with no hidden layers the algorithm was capable of
learning something basic but was unable to learn more
complicated tasks. After 300 generations under the phase
1 objective function, the NeuroEvolution algorithm de-
veloped some semblance of skill. The paddle moved up
and down, occasionally following the ball. However, after
completing more generations and increasing the complex-
ity of the objective function, the NeuroEvolution did not
progress in any way.

When we gave the NeuroEvolution a more complicated

APRIL 21, 2020

starting neural net, with 10 hidden layers that were fully
connected, it was unable to learn any strategy whatsoever
after 600 generations.

3.2 NeuroEvolution of Augmenting Topologies

NEAT proved to be a much more effective learner than
NeuroEvolution. Starting with the most basic neural net,
which only contained the 8 input nodes and the 4 out-
put nodes, it had learned an effective defensive game of
pong after only 825 generations of learning, each genera-
tion having a size of 45 genomes. This strategy consisted
of moving the paddle to the back wall and then following
the ball’s movement up and down to prevent the ball from
entering the goal. Since the main most significant value of
the objective function was goals scored against the neural
net, it is logical that the algorithm developed a defensive
strategy.

Additionally, in direct comparison to NeuroEvolution, af-
ter 300 generations of using the phase 1 objective func-
tion, both of the algorithms had developed similar strate-
gies — moving up and down to hit the ball. However,
NEAT was clearly farther along in terms of development
as it was significantly better at tracking the ball.

4 Conclusions

While both NeuroEvolution and NEAT are capable of
learning some task, it is clear that NEAT is a much more
efficient learner. This follows from the fact that is a
more generic learner and has one less parameter than Neu-
roEvolution, namely the topology of the neural net. The
topology is a complicated yet critical component of the
algorithm’s ability to optimize the objective function. Re-
moving it from the researcher’s hands generally speeds up
learning time.

It is noteworthy that while the final product produced by
NEAT is a competent player, it fails on two fronts. First, it
is nearly incapable of mounting an offensive threat in the
game. This is due to the final objective function and how
that objective function was built over the phases. The final
objective function emphasised defense by having a large
negative constant associated with the goals against vari-
able. This meant it was almost always more beneficial to
emphasise defense in the final phase of the objective func-
tion. Additionally, the two phases of the objective func-
tion prior to the final one did not help to learn the neces-
sary skills to attack in the game. From the previous phases
of the objective function, the algorithm only learned to
track the ball’s position using it’s y velocity. This skill
does not translate to anything in terms of offense, but it
translates well to defending the goal. Ultimately, this is
the only real strategy that the algorithm could perform —
defend the goal.

An additional failing of the algorithm has to do with the
size of the population. The small population size severely
limited the learning of the algorithm. There are two ways
this is limiting. Firstly, more genomes per generation sim-



ply means that the algorithm is exploring more of the so-
lution space per generation. More random permutations
will generally lead to a better result. However, since this
is a competitive game, it also means that the environ-
ment is being explored less due to the small population
size. Exploring the environment of the game is impos-
sible without varied opponents to explore against. Hav-
ing more genomes per population would lead to discover-
ing potential weaknesses in other genomes. This problem
manifest itself in the form of glaring error in the final neu-
ral net. While it was capable of tracking the ball when
it is moving up and down, which it is most of the time,
if the ball comes in a direct line, i.e. with O for the y
velocity, the neural net does not understand how to track
the ball. This means its defense is completely permeable.
This failing most likely occurred because it never had this
strategy used against it. There were no neural nets in the
population that were hitting it straight at the goal, so a
defense against this strategy was not valuable to the algo-
rithm. This means that in a competitive game having a
large population size and having that population represent
a wide range of strategies is critical to creating a robust
final neural net.

Finally, it should be noted how important the objective
functions are. It is critical that the objective function rep-
resent the true intent of the researcher. There should be
only one method of optimizing the objective function, and
it should be an acceptable strategy within the game. In an
earlier version of our work, the algorithm learned a trick
to optimize the objective function that was outside of what
the researchers expected. The original objective function
at this stage was only dependent upon the number of times
the paddle hit the ball; the number of frames in which the
paddle isn’t moving wasn’t penalized. In an earlier ver-
sion of the game, there was a way for the ball to glitch into
the paddle. The algorithm quickly learned this skill. It sat
still and used the strategy to rack up an endless amount
of "hits”. This led to us patching this glitch and adding a
penalty for a lack of movement.

5 Future Work

There are several ways that this work could be furthered
to improve learning performance. Firstly, finding a way
to increase population size significantly, to hundreds of
genomes per generation, would greatly increase the learn-

APRIL 21, 2020

ing rate of the system. This could be done by using a
different cloud computing service to distribute the games
across a wide range of servers. Additionally, instead
of having every genome compete against every other
genome a single time, resulting in (g) games per gen-
eration, a random selection of games could be selected.
This would decrease the necessary computational effort
per generation while resulting in most likely a negligible
drop in the scoring of the genomes.

The objective function is also an area for improvement.
To learn more advanced skills, such as hitting the ball in
order to score a goal, the objective functions must be more
finely tuned and probably layered more finely in complex-
ity. How many generations should study a single objec-
tive function is also critical but was not deeply explored
in this study. An additional set of inputs could have been
used (opponent paddle’s X and Y velocity), but this would
have made the project much more complex. In the future,
this could be added in order to predict the ball’s velocity
through basic momentum theory.

Finally, which inputs are given to the neural net is a
parameter of reinforcement learning that our version of
NEAT retains. This could be removed entirely, making
NEAT a nearly parameter-free learning algorithm, besides
the setting of the objective function. The removal of spe-
cific inputs would take significant work as it would require
the entirety of the game to be an input in the form of an
image. Using convolution neural nets to play games has
been explored in [4].

References

Edmund Ronald and Marc Schoenauer. “Genetic
Lander: An Experiment in Accurate Neuro-Genetic
Control”. In: Proc. 3rd Conf. Parallel Problem Solv-
ing from Nature. Springer-Verlag, 1994, pp. 452—
461.

Kenneth O Stanley and Risto Miikkulainen. “Evolv-
ing neural networks through augmenting topolo-
gies”. In: Evolutionary computation 10.2 (2002),
pp- 99-127.

Alan Mclntyre et al. neat-python. https : / /
github.com/CodeReclaimers/neat-python.
Volodymyr Mnih et al. “Playing atari with

deep reinforcement learning”. In: arXiv preprint
arXiv:1312.5602 (2013).

(1]

(2]

(3]

(4]


https://github.com/CodeReclaimers/neat-python
https://github.com/CodeReclaimers/neat-python

	Introduction
	Methodology
	Reinforcement Learning
	NeuroEvolution
	NeuroEvolution of Augmenting Topologies

	Game Development
	Parallelization

	Results
	NeuroEvolution
	NeuroEvolution of Augmenting Topologies

	Conclusions
	Future Work

